چطور مدلهای یادگیری ماشین رو تو محیط واقعی بدون دردسر تست کنیم؟ (پارت دوم)
انتخاب تکنیک آزمایش مناسب برای مدلهای یادگیری ماشین یکی از چالشهای مهمی است که هر استارتاپ یا تیم توسعهدهنده مدلهای یادگیری ماشین با آن مواجه میشود. در واقع، انتخاب تکنیک آزمایش مناسب برای مدلها به عوامل زیادی بستگی داره و نیاز به دقت و توجه به جزئیات داره. این که تکنیک آزمایش رو چطور انتخاب کنیم میتونه بر روی کارایی و عملکرد مدل در محیطهای واقعی تاثیر زیادی بذاره. توی این پست قصد دارم این موضوع رو بررسی کنم و نکات کلیدی که باید بهش توجه کنید رو توضیح بدم.
چطور مدلهای یادگیری ماشین رو تو محیط واقعی بدون دردسر تست کنیم؟
مدلهای یادگیری ماشین خیلی وقتها به چشم یک جعبه جادویی نگاه میشن که با دادهها کار میکنن و کلی نتایج شگفتانگیز بیرون میدن. اما این مدلها برای این که بتونن پیشبینیها و تصمیمگیریهای دقیق انجام بدن، باید حسابی آموزش ببینن و بعد از آموزش هم باید مطمئن بشیم که تو دنیای واقعی خوب کار میکنن. اینجا قراره درباره ۴ روش مختلف برای تست و اطمینان از عملکرد این مدلها تو شرایط واقعی صحبت کنیم.
آینده خدمات مشتری: یک سوم از مردم با عاملهای هوشمند راحتتر هستند!
در دنیای امروز، خیلی از مردم بدشون نمیاد که با یه عامل هوش مصنوعی صحبت کنن، البته به شرطی که بدونن دارن با یه ماشین حرف میزنن، نه یه آدم واقعی! تحقیقاتی که شرکت سیلزفورس (salesforce) انجام داده نشون میده که حتی یه سوم مردم ترجیح میدن برای خدمات سریعتر، با یه ربات هوشمند ارتباط داشته باشن. شاید براتون جالب باشه بدونید که تا سال ۲۰۲۸، پیشبینی شده حدود ۱۵٪ از تصمیمات کاری روزمره به طور خودکار توسط هوش مصنوعی گرفته بشه. پس بریم ببینیم که این فناوری چطور قراره دنیای کار و زندگی ما رو تغییر بده.
هنر استفاده از پرامپت: مقایسهای بین Claude و ChatGPT
در دنیای هوش مصنوعی مولد، یکی از ابزارهای قدرتمندی که اغلب نادیده گرفته میشود، پرامپت (دستور) است. کارایی مدلهای بزرگ زبانی مانند Claude از Anthropic و ChatGPT از OpenAI تنها به دادههایی که روی آنها آموزش دیدهاند یا الگوریتمهایشان وابسته نیست. بخش بزرگی از موفقیت آنها به چگونگی درک و اجرای دستورات و پرامپتها وابسته […]